

PRACTICE EXERCISES**ENG-445**
Building Energetics**Building
Envelope**

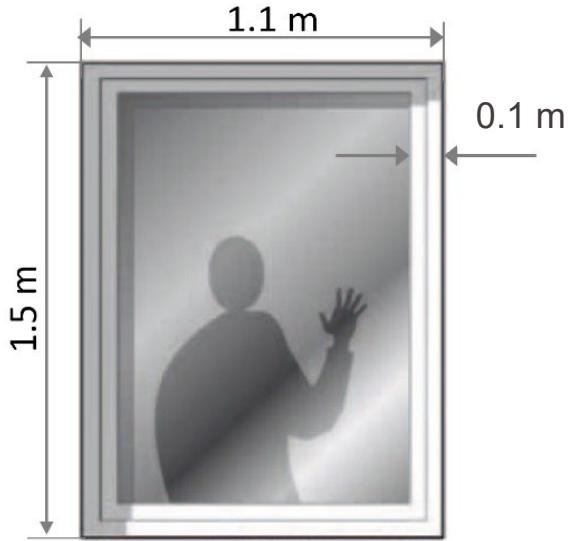
Assist. Professor
Dolaana KHOVALYG

7 November 2024

Exercise 1: Opaque Building Element

Determine the thermal transmittance (*U-value*) of the vertical wall structure *adjacent* to exterior. The composition of the wall structure is given in the table.

1. Check whether it is *lower* than the permissible limiting value U_{limit} for **renovation projects** per SIA 380.
2. Determine the required thickness of the thermal insulation (rock wool) layer so that the U-value of the wall will comply with the requirements for **new buildings**.


	d (cm)	λ (W/mK)
cement mortar	2	1.40
hollow brick	19	0.52
rock wool	15	0.041
façade mortar	2	0.70

Exercise 2: Window Performance

Consider a standard window facing outdoors shown on the picture. Two options of glazing for an air-tight double-pane window (filled with air) are available:

- (a) **uncoated** ($U_g = 2.9 \frac{W}{m^2 \cdot K}$, $g = 0.73$);
- (b) **coated with low-e film** ($U_g = 2.0 \frac{W}{m^2 \cdot K}$, $g = 0.65$)

Linear thermal transmittance of the glazing is $0.06 \frac{W}{m \cdot K}$ for uncoated glass and $0.08 \frac{W}{m \cdot K}$ for low-emissivity glass. The frame is a PVC-hollow profile ($U_f = 2.0 \frac{W}{m^2 \cdot K}$).

Determine which option of the glazing provides lower thermal transmittance of the window U_w and whether it complies with:

- (i) maximum permitted ($U_{w,max}$) values for windows per SIA 180
- (ii) the limiting value ($U_{w,limit}$) for windows per SIA 380 standard